
CUTTER CONSORTIUM

A Forensic Approach
to Information Systems
Development:
Part II — Ways to Fix the Problem

by Ian Bailey, Senior Consultant,
Cutter Consortium

In the first of this two-part Executive Update series,1 I
took a swipe at the currently accepted approach to sys-
tems development. My argument was that if a system
is to adequately support a business, the information it
handles must be rigorously derived from the business
itself. By producing a process model, then an informa-
tion model, then a data model, and then handing it all
over to an implementation team, we can end up some-
what removed from the reality of the business. The
people responsible for each of these steps in the chain
usually don’t have a good understanding of each other’s
specialities, and the result can be “Chinese whispers.”

I also noted there are a number of legacy systems out
there that are decades old and attempts to replace them
with modern technology have failed. The fact that the
old systems are so useful is perhaps more of a mystery
than the fact that today’s technology seems to offer
nothing to beat them. Another trait of the these old
systems that have stood the test of time is that they
(mostly) seem to have been developed inhouse, in the
days before there was a specialist IT function in the busi-
ness. This is even stranger. How can a system that’s 20
to 30 years old and developed by a bunch of enthusiastic
amateurs outperform the latest technology, designed
and developed by highly specialized information tech-
nologists and business analysts?

EVOLUTIONARY DEVELOPMENT

It seems these older systems were developed at a time
when most work was done on paper. This meant the
systems did not become “mission-critical” until well
into their operational lifetime, so there was a lot of
breathing space in the early years to adapt the systems
to business needs. There wasn’t a huge requirement to
get it right the first time, and the system was allowed
to adjust and adapt over time. What emerged from this
evolutionary process is a system that provides an accu-
rate model of the business.

The older systems have another advantage over mod-
ern systems — they do not have as many complex
layers of software to worry about. They don’t have
middleware and GUIs to recode every time something
changes in the database structure; the forms used are,
by and large, dictated by the structure of the data. It
might not look as nice as a Windows app, but when
they were “current technology,” it was much easier to
make small changes to the information structure. The
lack of knowledge about these systems today means
that is no longer the case, I should add.

With modern systems, we don’t have that option. Elec-
tronic information management is the default way of
working, and it is not acceptable to deliver a less-than-
perfect system and then test some new tweaks every few
weeks over a couple of years. In a modern IT environ-
ment, we have to deliver a less-than-perfect system and
keep it running 24/7. Any tweaks we make to the data-
base will lead to additional work to the middleware and
user interface. The tweaks can have unpredictable effects
due to the complexity of the systems, often introducing
bugs and sometimes even corrupting data. The result is
that it is often easier to change the way the users work
than to change the system.

Users have to do their day jobs, and whereas in the
good old days they’d just tweak the system if they
found a problem that was restricting their ability to
work, now they have to find workarounds for inade-
quate systems. Most common among these is the prac-
tice of putting information in the wrong field. IT folks

Enterprise Architecture Advisory Service
Executive Update Vol. 12, No. 15

http://www.cutter.com
http://www.cutter.com
http://www.cutter.com

ENTERPRISE ARCHITECTURE ADVISORY SERVICE2

Vol. 12, No. 15 ©2009 Cutter Consortium

tend to call this a “data quality problem,” but it’s often
because the system does not provide the fields the user
needs, so they’re forced to break the rules in order to
capture essential data. In Part I, I wrote that I was
amazed at the quality of the data in the old network
databases. A lot of this is due to the need for parsi-
mony: they made extensive use of fixed classification
codes, and there were few free text fields. I also think
the high data quality has a lot to do with the fact that,
in the past, problems were fixed in implementation,
whereas now they’re fudged in operation.

There are some interesting initiatives around to help
make systems more adaptive. SOA is usually sold on
the back of an “agile” business justification, and it’s true
to say SOA should provide a greater degree of flexibil-
ity in the business as a whole. SOA doesn’t solve the
information problem, though, and in some ways is yet
another layer of complexity that will be affected by
changes to the underlying information structures. In
fact, given the opaque, late-bound nature of a true SOA
implementation, it could result in an unpredictable
chain of dependencies on the information: the more
applications that subscribe to a particular information
service, the greater the impact of a change in its infor-
mation model. Dynamic programming languages offer
another interesting technology. Languages such as
Ruby offer the possibility of changing code in situ. Both
approaches have great promise, but they don’t tackle
the information problem.

GETTING IT RIGHT FIRST TIME

So, given that (at least for now) our options for evolving
a modern production system are limited, how can we
make sure that the system we develop more closely
matches the requirements of the business? Again, I
think the answer might lie in the old systems. The really
old ones have been honed and adapted to suit the busi-
ness and often work really well. The more recent legacy
systems tend to have data quality issues. I think that in
both cases, these systems present a forensic gold mine
for systems developers. Instead of producing indefensi-
ble process and data models, why don’t we look at the
data the users produced? I would argue that an exten-
sive set of legacy data (no matter how dirty) provides
the best possible indication of what the business does.

The problem with this is that the “gold” is often diffi-
cult to identify — it’s either buried in some arcane
tweak or “bolted” onto the system, or masquerading
as an inappropriate data entry in a field. For years, I
tended to reengineer these old systems on an ad hoc
basis, but now there is at least one formal method avail-
able. The one I know best is the BORO2 method, so I’ll
use that as the example. I’m sure there are others.

The BORO method thrives on large amounts of complex
data. It is a very formal and repeatable method, and its
mode of operation is forensic. In a BORO analysis, the
data itself is more important than the data structure
that stores it. The cynic in me likes to think this is
because we assume the old data model is wrong, but
in fact the BORO method is entirely neutral. It relies
on analyzing the facts that are present in the data, and
from those facts, we reconstruct a new model following
a repeatable set of steps. The resulting model is ready
for implementation. To gain maximum benefit from the
reengineered model, it must be implemented in such a
way that none of the flexibility is lost.

The analysis is deceptively simple. To be repeatable
and defensible, it has to be. The premise of the BORO
method is that you can’t rely on a term to accurately
identify what it refers to. You can never be sure that a
given word is understood in precisely the same way by
different people or systems. Consider really obvious
cases: the word “table” is understood differently in the
context of a database from a context involving furni-
ture. Cases can be much more subtle, though; one
person’s concept of table might include desks but not
coffee tables, whereas another person’s understanding
doesn’t include desks. This pattern tends to be reflected
in systems, which is why the BORO method relies more
on the data itself than on the data structure. To get a
clear understanding of what was actually going on, you
have to look at the data to see whether the users have
included desks and coffee tables.

The BORO method is based on three questions (see
Figure 1), asked in order. The first question is about
figuring out whether the thing being analyzed is physi-
cal. Examples of this would be my car, the Eiffel Tower,
the US, me typing this document, and so on. BORO
uniquely identifies these things by their spatial and tem-
poral extent. If two things occupy the same space for the

The Executive Update is a publication of the Enterprise Architecture Advisory Service. ©2009 by Cutter Consortium. All rights reserved.
Unauthorized reproduction in any form, including photocopying, faxing, image scanning, and downloading electronic copies, is against
the law. Reprints make an excellent training tool. For information about reprints and/or back issues of Cutter Consortium publications,
call +1 781 648 8700 or e-mail service@cutter.com. Print ISSN: 1554-7108 (Executive Report, Executive Summary, and Executive Update); online/
electronic ISSN: 1554-7116.

mailto:service@cutter.com

EXECUTIVE UPDATE 3

www.cutter.com Vol. 12, No. 15

same time, they are the same thing. This sounds pretty
obvious, but you’d be surprised how many people rely
on comparing the names of things without actually
checking to see whether they really are the same. If it’s
not a physical thing, then maybe it’s a type of thing. The
test for this is to see whether there are things of that type
(members). If there are, then it’s a type. BORO uniquely
identifies types by their members, so it’s useful to pick
some typical members at this point and add them to the
model as documentation examples. As with individuals,
names can’t be relied on to identify them; the example of
tables cited previously illustrates this well. Finally, if it’s
not an individual or a type, it’s probably a relationship
(tuple). Tuples are identified by the things they relate
(again, not relying on names). If you’ve got to this stage
and have not been able to answer yes to any of the ques-
tions, it probably means the original concept is a com-
pound of the things and tuples, so it needs breaking
down for analysis.

BORO is about getting away from our reliance on
names and moving toward a more accurate way of
identifying and categorizing things. Obviously, the
names are important, so once we’ve built our model,
we can reapply the names, but we can be sure what
we’re applying them to. BORO has one more trick up
its sleeve. Names have owners, so a given thing in the

model might have multiple names, each with different
owners. This gives us a really accurate way to compare
and integrate data from multiple sources. Two furniture
databases with tables called “table” might not be refer-
ring to the same things. BORO will not only identify
this, but will also show how they’re related through
simple set theory (see Figure 2).

From what appeared to be a trivial set of legacy data, a
richer model of reality has emerged. Not only that, but
the BORO naming pattern has provided a way to map
the elements in the new model back to the legacy data
in a very precise way. What emerges from a BORO
analysis is, formally speaking, an ontology. It will be
self-defining and extensible.

SUMMARY

Using BORO or a similar method to develop the infor-
mation models for systems cuts out all the requirements
drift that occurs across the analysis phases used in most
systems development methods — from process model
to information model to data model. BORO can also
accurately identify how two apparently similar con-
cepts differ, so it is particularly useful in building sys-
tems that replace more than one existing system, or that
take feeds from multiple sources.

Does it
have members?

No

(not individual)

Add to model

Yes
(individual)

Yes

(type)

No

Does it
relate things?

What does it relate?

Add these things to

the analysis.
Yes

START HERE

What are the members? Select some typical members and anaylyze these.

Select a concept
for anaylsis

Does it
have a spatial
and temporal

extent?

No (If you’ve got to this stage, the concept needs to be broken down further.)

Yes

(tuple)

Figure 1 — The BORO Process (simplified).

http://www.cutter.com

ENTERPRISE ARCHITECTURE ADVISORY SERVICE4

Vol. 12, No. 15 ©2009 Cutter Consortium

I don’t claim BORO and similar methods can solve
everyone’s problems. I chose to use BORO because I
like its precision and lack of ambiguity. It also seemed
to put a lot of the work I’d previously done with sys-
tems integration on a much more formal footing. It
provides a repeatable, defensible process, grounded in
sound mathematics and physical principles. BORO is a
steep learning curve, and in many ways, it is more of a
craft than a science. It has proved to be especially hard
for IT professionals and information scientists to come
to grips with; they have “unlearn” a lot of what they
currently do. I’ve used BORO on a number of projects
now and found that non-IT people get into the swing of
it much more quickly.

The challenge, as we complete this series, even with
BORO, lies in making sure that implementers don’t
cut corners. The BORO analysis will have exposed sub-
tleties in the underlying data that were not previously
explicit. The ontology it produces will be flexible and
extensible. All this benefit can be undone at the point
of implementation, so it is vital to ensure that the model
is implemented in such a way that no flexibility or
detail is lost. This is possible in relational databases but
requires some lateral thinking. It is also possible to use
an ontology engine to implement the model (several
scalable, commercial-grade systems are out there).

In summary, then, I believe that methods such as BORO
can really improve the systems development process —
not only simplifying and reducing the development
lifecycle, but also improving the quality of the systems
that are developed.

ENDNOTES
1Bailey, Ian. “A Forensic Approach to Information Systems
Development: Part I — Describing the Problem.” Cutter
Consortium Enterprise Architecture Executive Update, Vol. 12,
No. 13, 2009.

2BORO Program (www.boroprogram.org); and Partridge, Chris.
Business Objects: Re-engineering for Re-Use. 2nd edition. The
BORO Centre, 2005.

ABOUT THE AUTHOR

Ian Bailey is a Senior Consultant with Cutter Consortium's
Enterprise Architecture practice. He is an expert in military
and government enterprise architecture (EA) who has done
extensive work in applying EA techniques to information assur-
ance and security. Dr. Bailey was the Technical Lead in the team
that originally developed the UK Ministry of Defence (MOD)
Architecture Framework (MODAF); he also led the develop-
ment of the subsequent v1.1 and v1.2 releases. Dr. Bailey is
the MODAF subject matter expert for the Unified Profile for
DoDAF/MODAF (UPDM), representing UK MOD at OMG. He
is also an expert in ontology development. Having worked with
formal 4D ontologies since the 1990s, such as EPISTLE/ISO
15926, Dr. Bailey specializes in novel ways of implementing and
applying ontologies. Currently, he is the Technical Lead in the
IDEAS Group, a five-nation ontology development project that
supports interoperability between national EA frameworks.

Dr. Bailey has worked on several EA, ontology, and informa-
tion management projects for customers, such as AstraZeneca,
BAE Systems, Boeing, BP, Ericsson, NASA Jet Propulsion
Laboratory, Nokia, Shell, Statoil, Swedish Defence,
Thales Group, UK MOD, UK NHS, US DoD, US National
Reconnaissance Office, and Volvo. Prior to his MODAF work,
he was Editor of the ISO/INCOSE AP233 standard for systems
engineering. Dr. Bailey has a degree in engineering and man-
agement from Brunel University and Henley Business School
and a PhD in systems integration, also from Brunel. He can be
reached at ibailey@cutter.com.

System A
Names:
“table”

System B
Names:
“table”

Reengineered
Names:
“desks”
“coffee tables”

Figure 2 — Simple Venn diagram showing naming of sets (types).

